Neuroprotective role of dopamine against hippocampal cell death.

نویسندگان

  • Y Bozzi
  • D Vallone
  • E Borrelli
چکیده

Glutamate excitotoxicity plays a key role in the induction of neuronal cell death occurring in many neuropathologies, including epilepsy. Systemic administration of the glutamatergic agonist kainic acid (KA) is a well characterized model to study epilepsy-induced brain damage. KA-evoked seizures in mice result in hippocampal cell death, with the exception of some strains that are resistant to KA excitotoxicity. Little is known about the factors that prevent epilepsy-related neurodegeneration. Here we show that dopamine has such a function through the activation of the D2 receptor (D2R). D2R gene inactivation confers susceptibility to KA excitotoxicity in two mouse strains known to be resistant to KA-induced neurodegeneration. D2R-/- mice develop seizures when administered KA doses that are not epileptogenic for wild-type (WT) littermates. The spatiotemporal pattern of c-fos and c-jun mRNA induction well correlates with the occurrence of seizures in D2R-/- mice. Moreover, KA-induced seizures result in extensive hippocampal cell death in D2R-/- but not WT mice. In KA-treated D2R-/- mice, hippocampal neurons die by apoptosis, as indicated by the presence of fragmented DNA and the induction of the proapoptotic protein BAX. These results reveal a central role of D2Rs in the inhibitory control of glutamate neurotransmission and excitotoxicity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Usnic Acid on Apoptosis and Expression of Bax and Bcl-2 Proteins in Hippocampal CA1 Neurons Following Cerebral Ischemia-Reperfusion

Introduction: Cerebral ischemia-reperfusion causes complex pathological mechanisms that lead to tissue damage, such as neuronal apoptosis. Usnic acid is a secondary metabolite of lichen and has various biological properties including antioxidant and anti-inflammatory activities. This study aimed to investigate the neuroprotective effects of usnic acid on apoptotic cell death and apoptotic-relat...

متن کامل

Coenzyme Q10 Protects Hippocampal Neurons against Ischemia/ Reperfusion Injury via Modulation of BAX/Bcl-2 Expression

Introduction: Preliminary studies have con.rmed reduction in cell death following treatment with antioxidants. According to this .nding we study the relationship between consumption of CoQ10 and expression of Bax and Bcl2 in hippocampus following ischemia/reperfusion as proteins involved in cell programmed death or apoptosis. Methods: We studied the protective role of CoQ10 against ischemia-rep...

متن کامل

The neuroprotective effect of BSA-based nanocurcumin against 6-OHDA-induced cell death in SH-SY5Y cells

Objective: Parkinson’s disease (PD) is regarded as the second most common neurodegenerative disease affecting elderly population. There is a tendency toward finding natural cures to suppress the initiation and progression of this disease. Some epidemiological studies indicated lower incidence of PD in populations that consume curry. Curcumin, as the main ingredient of turmeric, has been suppose...

متن کامل

Neuroprotective Effect of D-Fructose-1,6-Bisphosphate against β-Amyloid Induced Neurotoxicity in Rat Hippocampal Organotypic Slice Culture: Involvement of PLC and MEK/ERK Signaling Pathways

D-fructose-1,6-bisphosphate (FBP) is an endogenous intermediate of glycolytic pathway which has potent neuroprotective effect against various neurotoxic insults. This study examined whether FBP could antagonize the neurotoxicity induced by amyloid β-peptide (Aβ) in rat hippocampal organotypic slice cultures, and the possible mechanism was also explored. Treatment with FBP (concentration ranges ...

متن کامل

Neuroprotective effects of epigallocatechin-3-gallate in an experimental model of Alzheimer’s disease in rat: a histological study

  Abstract   Introduction: Neurodegeneration change is one of the hallmark symptoms of which Alzheimer’s disease (AD) can be modeled by β-amyloid injection into specific regions of brain. (-)-Epigallocatechin-3-gallate (EGCG) is a potent antioxidant agent that its role against oxidative stress and inflammation has been shown in prior studies. In the present study, we have wanted to determine wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 20 22  شماره 

صفحات  -

تاریخ انتشار 2000